The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to

  • A

    $s \wedge  \sim r$

  • B

    $s \wedge \left( {r \wedge  \sim s} \right)$

  • C

    $s \vee \left( {r \vee  \sim s} \right)$

  • D

    $s \wedge r$

Similar Questions

The negative of the statement $\sim p \wedge(p \vee q)$ is

  • [JEE MAIN 2021]

Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$

  • [JEE MAIN 2021]

Suppose $p, q, r$ are positive rational numbers such that $\sqrt{p}+\sqrt{q}+\sqrt{r}$ is also rational. Then

  • [KVPY 2020]

The negation of the compound proposition $p \vee (\sim p \vee q)$ is

Negation of "If India wins the match then India will reach in the final" is :-